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Abstract

Collapsing rock due to induced excavations in mining cause air
blasts which can propagate for large distances in connecting tunnels.
The Fanno model for turbulent flow in a tunnel is applicable if the

* tunnel is long enough for wall drag to be significant. This may be
satisfied in a mining environment where underground excavations are
connected by networks of tunnels and shafts. Conservation laws for
three partial differential equations derived from the Fanno model are
investigated. For each equation the elementary conservation law is ob-
tained. For two of the equations a second conservation law is found.
Tt is demonstrated how conserved quantities derived from the conser-
vation laws and boundary conditions can be used to obtain similarity
solutions. Conserved quantities may also be useful when checking the
accuracy of numerical solutions.

1 Introduction

During mining operations large masses of rock are induced to fall in excava-
tions or cavities. This collapsing rock causes air blasts which can propagate
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for large distances in connecting tunnels. The air blasts are extremely haz-
ardous because they can overturn vehicles and cause considerable damage
to mining infrastructure [1]

In the Second Mathematics in Industry Study Group (2005) models were
developed by Sjoberg et.al. [2] for the increase in air pressure due to the
collapse of rock in an underground excavation. It was found that the rise in
the air pressure at the entrance to the tunnel is not very large and it was
concluded that the pressure at the mouth of the tunnel is of the form

p=po(1l +ep(t)) (1.1)

where pyg is the pressure in the cavity before collapse.

The Mathematics in Industry Study Group 2005 did not complete the
investigation of the dynamics of the air flow in a connecting tunnel but
suggested that the Fanno model for turbulent compressible flow in a rough
walled tunnel may be applicable [3]. In the mining environment tunnels are
generally sufficiently long for turbulent dissipation to be significant. -

The Study Group in 2006 was therefore asked to investigate if the pa-
rameters for typical mining procedures lead to the Fanno regime and if this
is the case to investigate the application of the Fanno model and asymp-
totic reductions of the model to the air flow in a tunnel connected to the
excavation.

Air blasts have been observed to travel large distances in tunnel networks
and this suggests that conservation laws and conserved quantities derived
from the conservation laws and boundary conditions may be important in
understanding the dynamics of the turbulent air flow in the tunnel. Conser-
vation laws for the partial differential equations of the asymptotic reductions
of the Fanno model will therefore be investigated as part of the analysis.

2 Fanno flow model and Fanning friction factor

The essential assumption in the Fanno flow model is that the main effect of
turbulence is to exert a wall drag by way of a boundary layer at the wall.
The wall drag dampens flow over large times and distances but it has a small
effect locally.

The Fanno flow model will be applicable if the flow is turbulent and the
tunnel is long enough for wall drag to be important. These conditions were
satisfied in the problem of air-jet spinning of polymer filaments for which the
two-dimensional channel had aspect ratio 10~2 [3, 4]. In the mining situation
the diameter of a tunnel may be 4 m and an aspect ratio of 10~ would
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correspond to a tunnel network of about 4 km in length. In many mining
situations there are usually interconnections of an underground excavation
by tunnels and shafts to other underground excavations. The Fanno flow
model may therefore be applicable.

In order to illustrate the derivation of the equations for Fanno flow in a
tube, Ockendon et.al. [3] considered the simpler problem of flow in a two-
dimensional channel. We will briefly outline here the main steps of their
derivation with emphasis on the part played by the wall drag in the Fanno
model.

Consider a nea.rly unidirectional two-dimensional gas flow in a channel
—38(x)<y<3; 1 S(z) whose length is much greater than its width. Let the
mean turbulent velomty, pressure and density be (u*,v*), p* and p*. The
mean turbulent stress tensor is

* __ * * % * *
Toe =Py Ty=P, Toy= Tye =T - (2.1)

Thé equations of conservation of mass and the balance equations for mo-
mentum and energy in a form suitable for averaging over the width of the

channel are
op* 0

ot

(p*v*) =0, (2.2)

. % 8p _ort
T8y’

(2.3)

2 (prun)+ 3 (u) + o

O B (prwE g <p*v*E*)+— (up")+ a—y(v*p*) - 2—y (w7
(2.4)
We average over the channel by integrating with respect to y from y =
15(z) toy = § S(x). It is assumed that 7* changes rapidly from a small
value outside the boundary layers to the wall stress 7w at the walls and
that, except for the right hand sides of (2.3) and (2.4), all the terms in
the equations can be considered as being independent of y when averaging
over the channel. We assume that there is no slip and no blowing at the
boundaries y = :I:% S. Thus

u*(z,£55) =0, v*(z,£55) = 0. (2.5)

Then for example,

lg * g
2° Ou 0 « 2 o , .
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is *
22 Ov
dy = v*(z,1 8) —v*(z,-18) =0, 2.7
[-%S By Y ( 9 ) ( ) ) (2.7)
1
/23 ?——(U*T*)d =u*(z l;‘:7)11""(:.1: lS)—u"‘(af: S)T (x,~18)=0
1 3 Y= 19 ? 2 1 2 1
-i50Y
(2.8)
38
2 8 * * *
[%S%T dy=T(:B,~%S)—T(:E,—-%S)=2TW', (2.9)
where
™(z, 3 S) = Tw, ™(z,—385) = (m, =9) = ; (2.10)

We denote by u, v, p,p, E the average of the quantity over the channel and
since u*,v*,p*, p* and E* are independent of y in the averaging process,
u=u", v=uvx, p=p* p=p* and E = E*. Thus averaging (2.2) to (2.4)
over the channel gives

2 (05) + 2= (ous) =0, (2.11)
2 (puS) + o (puS) + 2 (p5) = 2mw (2.12)
gt (BS) + 3= (puE) + 2 (up$) = (2.13)

The only difference between the Fanno ﬁow model and laminar gas flow
is the right hand side of the momentum balance equation, (2.12). The right
hand side of the energy balance equation, (2.13), vanishes as in inviscid
laminar gas flow because of the no slip boundary condition at the wall. The
shear stress at the wall, 7y, is given by the empirical result

TW
——f 9.14
1 pujul d 214)

where f = O(1073) is a Fanning-type fraction factor.
Ockendon et.al. {3] set

p 1 4
EFE=—"— 4 -, 2.15
(v—1p 2 (215)
where « is the ratio of the specific heats. The equations are non-dimensionalised
using a typical channel width Sp, a channel length L = Sp/ f and time L /ug
where ugp is a typical initial value of u. The length scale is the minimum
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channel length over which the effect of wall shear stress enters the model at
zero order. There are no Riemann invariants as in inviscid gas flow. The
wall drag can cause shocks even in a channel with constant width.

The equations for Fanno gas flow in a tube are similar with S denoting
the cross-sectional area.

Two problems considered by Ockendon et.al. [3] may be relevant to air
blasts. The first problem is concerned with turbulent gas flow in a tube
when the pressure at the end z = 0 is suddenly changed by an amount
small compared with the background pressure. This could model the sudden
increase in pressure at the tunnel entrance due to the fall of the rock mass
in the excavation. The second is the piston problem in which a piston at
z = 0 is moved impulsively with constant velocity small compared with the
speed of sound in the undisturbed gas. Plugs are placed at the entrance to
tunnels connecting with the excavation before the rock mass is induced to
fall. If the plug is not put firmly in place it may be moved along the tunnel
like a piston by the air blast. The piston problem could model the turbulent
gas flow due to the motion of the plug along the tunnel.

3 Small pressure change at tunnel entrance

The gas is initially at rest with pressure po and density po in a semi-infinite
tunnel z > 0. At t = 0, the pressure at the entrance is changed from pg to
po(l + £v) where £ > 0. Ockendon et.al. [3] introduced the time variable T
and the pressure and density variables, p and p, defined by

t=e¢T, pzé—ﬁ, p=1+¢ep. (3.1)

A shock moves into the undisturbed region. The equation of the shock in
the (z,7) plane is

m=(1+%(1+’y))7. (3.2)

Ockendon et.al. [3] considered a sequence of time scales. The wall drag
has a different effect over each time scale. They found that the two most
important time regimes are 7 = O(e~1), which is the scale over which the
wall drag first affects the lowest order solution, and 7 = O(e72). We will
consider the time scale 7 = O{e~2). For this time scale the solution is easier
to analyse asymptotically.

Consider first the flow near the shock. Introduce the time and length
scales, 5 and &2, defined by

7o = &1, T9 = &%, (3.3)
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which implies that z = O(£72), and the velocity ug, pressure ps and density
p2 defined by
u = guy, P = €pa, p=¢eps . (3.4)

Then the second order conservation of mass equation and momentum and
energy balance equations in zs and = are

Opz , Oug _
7o + Oxy 0, (3:5)
3‘!1,2 8p2 _ 9
6’7'2 + 8.’1:2 = U2 y (3.6)
3P2 Oug
8‘!‘2 63}2 =0. (3.7)

The pressure can be eliminated from (3.6) and (3.7) to give a nonlinear wave
equation for ug:

321&2 62'&',2 Oug
— = —2us—— . 3.8
or? Ozl Y25, (3:8)
The boundary conditions on ug are
2
Ty = Ty 1 Ug = — , (3.9)
T2
29— 0: ugwigg. (310)
T3

Also at second order, the pressure p; — o0 as 23 — 0. By considering
how py grows as zp — 0, Ockendon et.al. [3] introduced the variables Zg
and s defined by

Dy =eY33y,  uy=e 3, (3.11)
which implies that z = O (5_5/ 3) andu =0 (al/ 3), and transformed from ps
and p2 back to p and p defined by (3.4). Equations (3.5) to (3.7) transform

to

0p  Oug .
S+ =0, (3.12)
ap
'8?2 = Uy, (313)
o8 L 08 _y (3.14)
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The velocity %z can now be eliminated from (3.13) and (3.14) to give a
nonlinear diffusion equation for p:

op 1 9%p
P _ P (3.15)
019 5 -\1/2 972
(%)
The pressure p satisfies the boundary conditions
To=0: p=1. (3.16)
3 2
Fo—o0: P =2 (3.17)
Z3

Alternatively. the pressure f can be eliminated from (3.13) and (3.14)
to give a nonlinear diffusion equation for @2:

3217.2 _ Dug
_é% = 2U2 51_-*2— . (318)

The velocity g satisfies the boundary conditions

D
=4

S 2 _

Iy = 0: —_—33—32‘ 0 s (3.19)
3

Tg — 00! Ug ~ —;’% : (3.20)

Ly

The solution of (3.15) to (3.17) for  and (3.18) to (3.20) for 4y apply in a
region nearer the entrance where 2 = O(z~%3). Equation (3.8) for uz and
bounding conditions (3.9) and (3.10) apply in an adjacent region next to the
shock where z = O(e72).
We can therefore summarise the structure of the solution when

r = O(e~?) [3]. When z = O(1) = O(e~2), which is the region close to
the shock, § = O(e) and u = O(e) (since p = epp and u = €u2 and pe and
up are O(1) in this region). Equation (3.8) and boundary conditions (3.9)
and (3.10) apply. When z = O(e5/3) which is the region further from the
shock and nearer the entrance, p increases to O(1) and u to O(e'/3) (since
w = /3%, and Gy = O(1) in this region). Equation (3.15) with boundary
conditions (3.16) and (3.17) and equation (3.18) with boundary conditions
(3.19) and (3.20) apply.
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4 Similarity solutions

The similarity solution of the nonlinear diffusion equation (3.15) for p subject
to the boundary conditions (3.16) and (3.17) has been derived by Ockendon
et.al. [3]. We will briefly outline the steps in the derivation because inter-
mediate results will be required later. We will then show how conservation
laws and conserved quantities derived from the conservation laws can be
used to solve problem (3.18) to (3.20) for the velocity @z and obtain another
solution of (3.15) for p. This will motivate the study of conservation laws in
the next section. The approach of Dresner [5] for the derivation of similarity
solutions will be followed.
To simplify the notation we will write (3.15) to (3.17) as

9%p

dp 1
ot a0\ /2 Ox2
2(-%)
z=0: p=1, (4.2)
3¢2
T~ 00: P~ 5 (4.3)
and (3.18) to (3,20) as
&u Ou |
5E = (4:4)
Ju
3t
T —00: U~ 5. (4.6)
4.1 Diffusion equation for pressure
Consider the scaling transformation
f= )%, =Mz, p=2Xp. (4.7)
Under the transformation (4.7), (4.1) becomes
O _ yotgpre_ 1 % (48)

T

ot 9 (—gé)”"' ox2
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and therefore (4.1) is invariant under the transformation (4.7) provided
¢ = 2a — 3b. Suppose that the solution of (4.1) is p = f(¢,z). Then

p= f(f: 3_:) (49)
is the solution of 9 . 225
14 Yy
== - 4.10)
172 972 (
because (4.10) has the same form as (4.1). From (4.9)
A20=3b it ) = F(A%, Aox) (4.11)

and differentiating (4.11) with respect to A and dropping the overhead bars
or equivalently setting A =1 gives

at % + bz g—i- = (22 —3b)f . (4.12)

The solution of the first order linear partial differential equation for f(t,z)
is readily derived and since p = f(t,z) we obtain

p(t,2) =€), =4, (4.13)

where F is an arbitrary function and o = b/a.
Substituting (4.13) into the partial differential equation (4.1) yields the

ordinary differential equation

9 1/2 1/2

The constant o is obtained from non-homogeneous boundary conditions or

from conserved quantities.
Consider the boundary condition p = 1 at = 0 which using (4.13) is

1 =#>732F(0) . (4.15)

Thus a = % and
T

p,z) =F(&) . &=573; (4.16)
where F(£) satisfies the ordinary differential equation

2F 4 1/2
Rzz"‘l'gf( dF) %:0: (4'17)

dé
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subject to the boundary conditions

FO)=1, (4.18)
Fe) ~ g% 88 £ — 00 . (4.19)

Equation (4.17) is a first order differential equation in %£. Letting

dF

W=—2 (4.20)
equation (4.17) becomes the separable equation
ddzv ggwm (4.21)
which is readily solved to give
& 2

where a is a constant. Equation (4.22) may be integrated by letting
£ = gtan @ and imposing the boundary condition F(0) = 1, we obtain

9 aé 1€
g Sy 2
roi- Bl e () o
But [6]
L T 1 1 1
tan""z = 5 - ;C—-I-@-I—O(wf’), as & — 00 (4.24)
and therefore
9 3 1
F(E)—l—-——-———!-‘53 0(6—5), as & — 00. (4.25)
It follows from the boundary condition (4.19) that
1/3
a= (?42) (4.26)

and hence

plt.a) = F(©) =1 [ ¢4 tan"! c] .. (4.27)
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4\ 13 ANY3 4

Equation (4.27) is the solution derived by Ockendon et.al. {3].

In Figs 1 and 2 we return to the notation of Section 3. In Fig. 1, p is
plotted against Z3 for a range of values of 7. As Ty increases, the increase
in pressure extends further into the tunnel. In Fig. 2, p is plotted against
7o at fixed positions in the tunnel. The pressure $ increases steadily form
p=0at o =0top=1at 72 =00.

where

o9

[R:1

a7

06

IR, 05

04

0.3

02r

o1F

L] T X L . 1 T T
[+ 2 4 ] 2 10 12 14 18 18 20

Figure 1: Pressure § given by (4.27) plotted against Z3 for a range of values
of 5.

4.2 Diffusion equation for fluid velocity

The fluid velocity u may be calculated directly from the solution (4.27) for
p(t, x) using (3.13): 5

P _ .2
Alternatively, v may be derived without prior knowledge of p by solving the
nonlinear diffusion equation (4.4), subject to the boundary conditions (4.5)
and (4.6). We now consider this second approach in order to illustrate the
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Il 1 1] 1 1 L 1 L 1
0 50 100 160 200 250 300 350 400 450 500
72

Figure 2: Pressure p given by (4.27) plotted against 72 at fixed positions Z3
in the tunnel.

part played in the solution by a conservation law for the partial differential

equation.
By considering the scaling transformation (4.7), with p replaced by , it
can be shown that the similarity solution of (4.4) is of the form

u(t,z) =tRFE),  E=o. (4.30)

where « is a constant. Substituting (4.30) into (4.4) leads to the ordinary
differential equation

d*F dF o
z — =0. 4.31
fez +206F G —21-20)F* =0 (4.31)
The boundary conditions (4.5) and (4.6) become
3o dF(0 —% 3
#t 3“—%:0, t12 (F(f)—?) ~0 as £—oo. (4.32)

Clearly, the constant « cannot be determined from the boundary conditions.
To obtain « we first rewrite (4.4) in the form of a conservation law

5+ 5 (-52) =0. (433)
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Integrating (4.33) along the tunnel with respect to x from the entrance z = 0
to £ = 0o gives

4 /oo w’(t :r)dm + [—»8—u (t,x) T 0 (4.34)
dt 0 ’ Ox , 2=0 - )
But from the boundary conditions (4.5) and (4.6),
ou du
and therefore o
/ uwl(t,x)dz =k, (4.36)
0

where k is a constant independent of ¢. Substituting (4.30) into (4.36) and
changing the variable of integration from to £ at fixed time ¢ gives

2 fo ” FY&)dé =k . (4.37)
Hence a = % Thus
ut,g) =t 73R (),  &=5- (4.38)
where F(¢) satisfies the ordinary differential equation
d’F 24

2y
53 =0, (4.39)

subject to the boundary conditions

& (0)=0, (4.40)

F(()~—= as &—o00. (4.41)
It remains to obtain the constant k. Integrating (4.29) with respect to

from = — 0 to ¢ = oo and using the boundary conditions (4.2) and (4.3)
gives k = 1. The conserved quantity therefore is, from (4.37),

L%W@%=L (4.42)
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Equation (4.39) is readily integrated and imposing the boundary condi-
tion (4.40) we find that
3

where a is a constant. The boundary condition (4.41) is automatically sat-
isfied. The constant a is obtained from the conserved quantity (4.42). Sub-
stituting (4.43) into (4.42) yields

F(§) = (4.43)

®  du 97
3 _ - _
a _QA Grw2 1’ (4.44)

where the integral was evaluated by letting v = tan §. Hence

3
and therefore, from (4.38),
3t
u(t, z) = (o t2)2/3 . (4.46)
Expressed in the notation of Section 3, (4.46) becomes
1/3
U= T (4.47)

B+ ()7

which agrees with the solution of Ockendon et.al. [3].
In Fig 3, u is plotted against % for a range of values of 75. At a fixed
time 75, the velocity u decreases steadily as Z» increases.

In Fig. 4, u is plotted against 75 for several positions Zs in the tunnel.
At a given position Z, u increases steadily from zero to a maximum value

of
173 32
£y

and then decreases steadily to zero as 7 — oc.
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Figure 3: Velocity u given by (4.47) plotted against Zo for a range of values
of 7o with e = 1071 .

4.3 Elementary conservation law for pressure

In Section 4.1 we derived the constant o in the similarity solution (4.13) from
the boundary condition p(t,0) = 1. We saw in Section 4.2 that a conserved
quantity can also be used to derive the constant o in a similarity solution.
In this section we will investigate the application of a conserved quantity to
obtain a in (4.13). We will see that one of the boundary conditions (4.2)

and (4.3) has to be dropped.
Equation (4.1) can be written in the form of a conservation law as

(—g—g) 1/2] =0. (4.49)

Integrate (4.49) with respect to = from the tunnel entrance, z = 0, to x = oc:

([ staria) + {(—%)W] s (4.50)
0

From the boundary condition (4.3),

Op B
o (t,o0) =0. (4.51)
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Figure 4: Velocity u given by (4.47) plotted against 75 at fixed positions Z»
in the tunnel with e = 107!,

However, the boundary condition
Op

£.0) = 4.52

22 (£,0) =0 (452)

is not in general satisfied. We will look for a solution for which {4.52) holds
and compare the results with the solution derived in Section 4.1. If (4.52)

is satisfied then
d [& ]
— (/ p(t, a:)d:r) =0 (4.53)
dt \ Jp

/mp(t, z)dz =P, (4.54)
0

where P is independent of ¢ and therefore a constant, which represents the
strength of the pressure pulse.

Substitute (4.13) into (4.54) and make the change of variable from z to
¢ at fixed time t. Equation (4.54) becomes

and therefore

22 /0 ” Fde=rp (4.55)
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and hence o = 1. Thus from (4.13),

1 z
p(t,z) = 7 F(g) §= r (4.56)
where from (4.14), F(£) satisfies the differential equation
&2F dF\**d
T2 (‘EE) T €)= 0. (4.57)
subject to the boundary conditions (4.52) and (4.3),
dF
3 0)=0, (4.58)
3
F(&) ~ @ as £—00. (4.59)

Clearly, the boundary condition (4.2), p(¢,0) = 1, is not satisfied by (4.56).
The conserved quantity (4.55) becomes

o0
] F(&)de = P . (4.60)
0
The differential equation (4.57) can be written as
d dF\"/?
i |(%)

Unlike (4.17), (4.57) is not a first order differential equation in %EE' The
solution of (4.61) subject to the boundary condition (4.58) is

- €r) =0. (4.61)

F) = ﬁ? , (4.62)

where ¢ > 0 is a constant. The boundary condition (4.59) is automatically
satisfied by (4.62). The constant ¢ is obtained by substituting (4.62) into
the conserved quantity (4.60). This gives

o0 1/2
= [i f dn ] _ 19046 (4.63)
Plo 1+7° VP
since [7] [OO o o s
o 1+7° 3V3~ .
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From (4.56),
Pt 7) = -t . (4.65)
’ z3 + (ct)3
Hence, at z = 0,
3 P'3/2
p(t,0) = i 0.434 — (4.66)

The boundary condition p(¢,0) = 1 is not satisfied. The initial pressure at
the tunnel entrance is infinite but the strength of the air blast defined by P
is finite. The perturbation theory developed in Section 3 would break down
for small values of time near the tunnel entrance as well as for large values
of P.

In Figs 5, 6 and 7 we use the notation of Section 3. In Fig. 5, p is plotted
against T for a range of values of 7. The pressure decreases steadily as 7
increases. It extends an increasing distance into the tunnel as 75 increases.
In Fig. 6, p is plotted against 7 at several fixed points Zs in the tunnel. At
a given point Zg, p grows steadily from zero to the maximum value

B = 0.4373_352 8t Tamax = 0.662Z5VP (4.67)
and then decreases steadily to zero as 73 — o00. As we move further into
the tunnel, corresponding to larger values of z3, the maximum pressure
decreases and occurs at a later time. In F'ig. 7, p is plotted against 7 at a
fixed position Zs for a range of values of P. As P increases the maximum
pressure increases and occurs at a later time. We see clearly that P is a
measure of the strength of the pressure pulse.

5 Conservation laws

Equations (4.33) and (4.49) are examples of conservation laws. We saw
in Section 4 the important part conservation laws could play in obtaining
similarity solutions of partial differential equations. In this section we inves-
tigate if other conservation laws exist for the partial differential equations
obtained in Section 3.

5.1 Nonlinear diffusion equation for pressure

Consider the nonlinear diffusion equation (4.1) for the pressure. A conser-
vation law for equation (4.1) is of the form (8]

D\T? + DoT? = .
1 + 12 (4.1) 07 (51)
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Figure 5: Pressure p given by (4.65) plotted against Z for a range of values
of » with P=1.

where the total derivatives, D; and D3, are defined by
0 0

g 0
Di=Di= % +pto +Pt 5~ +Pa 2
1= Dy at+ptap+pttapt+ptap$+ . (5.2)
o ad 7} 0
D2—Dw—‘(9_$+pz‘(%+ptma_m+pmm“5£+"' (5.3)

and subscripts denote partial derivatives. The vector T' = (T, T?) is a
conserved vector for the partial differential equation (4.1). Equation (4.49)
can be written in the form

Di(p) + Da {(-a)"?) | =0 (5.4)

The conserved vector

T = (p, (-pa)""?) (5.5)

is referred to as the elementary conserved vector for (4.1).
We will look for conserved vectors of the form

T = T ¢, z,0,0), T2 =Tt z,0,p2) - (5.6)

More general forms for T 1 and T2 could be considered but the calculations
become progressively more difficult as additional variables are added to T
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o 2 4 6 8 10 12 14 16 18 20
T2

Figure 6: Pressure p given by (4.65) plotted against 75 at fixed position #g
in the tunnel when P=1.

and T2. We will use the direct method for deriving conservation laws which
consists in substituting (5.6) into (5.4) and separating by powers of the
variables on which 7! and T2 do not depend. Substitute (5.6) into (5.1)

and replace py, using (4.1):
Pez = 2(_Pm)1/2pa:a: . (5°7)

This gives

3T1+ 8T1+ 8_T_1_+§£2+ oT?
o Dt p Dt o, 7 Pz ap

3T2
+ 2(—ps)py oo =0 (5.8)

Since T! and 7?2 do not depend on py; we can separate (5.8) by powers of py;:

oT!
Dit o 0, (5.9)

o1 ort  oT? T2 179 OT?
. . — —— — /2 et
remainder: T + Pt Bp + B + Pz ap + 2(—pz) ' “ps . 0. (5.10)
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10

0 10 20 a0 40 =0 Bo
T2

Figure 7: Pressure p given by (4.65) plotted against 73 at T2 = 1 for a range
of values of P.

From (5.9), T! = T*(t,z,p) and we can therefore separate (5.10) according
to powers of p;:

ort 0T _

. 1/ —
Pt 6t —_ + ( pa:) p:z 3 (5.11)
, oTt T2 oT?
remainder: —é)t_+ o + Pe—m— B = 0. (5.12)
From (5.11),
T2(t, 2, p,ps) = (- mwﬁ; top)+ Altop) .  (5.13)

Substitute (5.13) into (5.12) and separate according to powers of pg:

02T
(_pm)3/2 : _6"?7 (t, x?p) =0, (514)

Pz % (t,z,p) = (5.15)
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02T
_p )12, - _
(P G () =0, (5.16)
. oT? 0A
remainder: rr (t,z,p) + £ (¢, z,p) = 0. (5.17)

Thus from (5.15), A = A(t,z) and from (5.14)and (5.16)
T'(t,z,p) = pB(t)+ C(t,z) . (5.18)
Substituting (5.18) into (5.17) gives

dB(t) A 0C(t,x) A 0A(t,z) _
& T T e

0. (5.19)

Separating (5.19) by powers of p gives B(t) = By and

30(% z) Ma(i’ z) 0. (5.20)

Hence, from (5.18 and (5.13),
TY(t,z,p) = Bop+ C(t, ) , (5.21)
T%(t,7,ps) = Bo(—po)'/? + A(t, 7) (5.22)

where C(t,z) and A(, z) satisfy (5.20). Now the conserved vector
T'=Ct,z), T?=A{z), (5.23)
where C(t,z) and A(t, z) satisfy (5.20) is a trivial conserved vector because

oC 0A
DiT'+DT? = — + —=0 5.24
117+ D 5% T Bz (5.24)
without imposing the condition that (4.1) is satisfied. Thus the only con-
served vector of the form (5.6) for the partial differential equation (4.1) is
the elementary conserved vector (5.5). There may of course be conserved

vectors for (4.1) more general than (5.5).

5.2 Nonlinear diffusion equation for velocity

We saw in Section 4.2 the important part played by the conservation law
(4.43) in the similarity solution of the nonlinear diffusion equation (4.4). We
now investigate if there are other conservation laws for equation (4.4).
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A conservation law for (4.4) satisfies

DT 4 DT =0, (5.25)
(4.4)

where the total derivatives, D1 and Dg, are now defined by

0 0 0
Dy =D = — g g " _
1 t= 5 + ug e + U B, + Uzt B + e, (5.26)
0 0 0 0
Dz—Dm-——%+u$5a+uw%;+um%:+---. (527)
Equation (4.33) can be written as
2 _ — 0
D1 (u?) + Da(—ug) ) 0. (5.28)
The conserved vector
T = (u®, —ts) (5.29)
is the elementary conserved vector for (4.4).
Consider conserved vectors for (4.4) of the form
T = T(t, @, u,ut) , T2 = T?(t, x,u, Uz) - (5.30)

Substitute (5.30) into (5.25) and replace ugy using (4.4),

Ugy = 2UUL - (5.31)
We obtain
o1 oT? art  oT? oT? oT?
L — —_— —t — — 42 =0. .
-y + ut 5u + Ut ™ + B + Uy o + 2uuy B 0 (5.32)

Now T! and T2 are independent of uy and we can therefore separate (5.32)
according to powers of

Ut + 5’(7{;— = 0, (533)
: art ~ ort  oT? 2 or?
remainder: _ét— + ut —3? + -E:E" + Uy 5 + 2uuy 6um =0 (534)

Thus from (5.33) T! = T"(t,,u) and since T 1 and T? do not depend on
ug, (5.34) can be separated by u; to give
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ot oT?
. 32 = 5.35
e ou et Ouy 0, (5:35)
) oTt  o1? oT?
remainder: 'y + e + Uy e 0. (5.36)
Differentiating (5.35) with respect to u,, we obtain
o?T1?
ouZ = 0 (5.37)
and therefore
T(t, , u, ug) = uy A(t,z,u) + B(t, z,u) . (5.38)

Substituting (5.38) back into (5.35) we obtain

1

oT
Bu +2uA(t,x,u) =0. (5.39)

It remains to find A(t, z,u) and B(t,z,u). Substitute (5.38) into (5.36)
and separate the resulting equation by powers of u, to obtain

ul %;% (t, z,u) =0, (5.40)
OA 0B
Ug % (t1 €L, u) + 5',; (t: w:u) =0, (541)
. oT? 0B
remainder: s (¢, z,u) + e (t,z,u) = 0. (5.42)
From (5.40), A = A(t,z) and therefore from (5.41)
B(t,z,u) = —u?——A%i) + C(t, x) (5.43)
and from (5.39)
Tt z,u) = ~u?A(t,z) + D(t,z) . (5.45)

By substituting (5.43) and (5.44) into (5.42) and separating by powers of u
we obtain |

u? %ti (t,x) =0, (5.45)

Y el PRt L g 0 Rl Y

o A e e o, T i S S

A e v
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02 A(t, x) _
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u: o =0 (5.46)
remainder: oD éi’ z) 4 805; 2) _q. (5.47)
It follows from (5.45) and (5.46) that
A(x) = A1z + Az, (5.48)
where A; and Ay are constants and hence from (5.43),
B(t,z,u) = —Aiu+C(t, ) - (5.49)
Let A; = —cp and Az = —cy. Then (5.44) and (5.38) become
T(t, z,u) = cru® + cpz’ + D(t, 7) (5.50)
T2(t, 2, u, ug) = c1(—Uz) + c2(u — zuz) + C(t, x) , (5.51)
where D(t,z) and C(t,z) satisfy (5.47). The conserved vector
T! = D(t,z), T*=C(z), (5.52)

is a trivial conserved vector because the conservation

law (5.25) is identically

satisfied. The conserved vector is therefore a linear. combination of two

conserved vectors.
T1=‘U.2, T2=_um,

T! = u? | T? = 4 — TUy

Equation (5.54) is the elementary conserved vector
(5.54) is new.

5.3 Nonlinear wave equation

To simplify the notation we will write (3.8) as

u_ou_ 0
o2 ox? ot
and the boundary conditions (3.9) and (3.10) as
2
x=1: U= -,
t
x—0: U~ ﬁ

12

(5.53)
(5.54)

. The conserved vector

(5,55)

(5.56)

(5.57)
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Conserved vectors for (5.55) satisfy

DT + D, T2 =0 )
1T+ Dy 555 ) (5.58)

where D; and D are defined by (5.26) and (5.27). We will look for conserved
vectors of the form (5.30). Substitute (5.30) into (5.58) and replace uy, by

This yields
ar! oT! ort | 8T? ore oT?
-'ét-'—' +ut—5{;—+utt—5a+g+u$%- —{-(utt—l—Zuut) 6’u,m =0. (560)

Since T! and T2 are independent of uy we separate (5.60) by powers of us:

arl  or?
, or? ort o717 o2 or?
remainder: p + uy 5u + B +%_6’u_+2uut o = 0. (5.62)

Differentiating (5.61 with respect to u; and then integrating twice with re-
spect to u; gives

THt, z,u,u;) = ug A(t, z,w) + B(t, z,u) . (5.63)

Substituting (5.63) back into (5.61) and integrating with respect to u, gives

T2(t, x,u,uz) = —ug A(t, z,u) + C(t, z,u) . (5.64)

It remains to obtain A(¢, z, u), B(t, z,u) and C(¢,z,u). Substitute (5.63)
and (5.64) into (5.62) and separate by powers of u; and u,:

24 _

2
uy 5 = 0, (5.65)
A

ul %& =0, (5.66)
0A 0B

U - -5;5- + 5‘; —2uAd = 0, (567)
0A 0OC

Uy — — — =0, (5.68)
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9B 9C _,

remainder: 5 + 57 = 2 (5.69)
From (5.65) and (5.66), A = A(t,z) and solving (5.67) for B(t,z,u) we
obtain DAL

B(t,z,u) = W A(t,z) —u —(,STC’@ + D(t,x) . (5.70)
To obtain C(t,z,u) we integrate (5.68) with respect to w:
C(t,z,u) =u%gxim—)+}5‘(t,x) : (5.71)

Finally, we substitute (5.70) and (5.71) into (5.69) and separate by powers
of u:

At
u? : 3__((97’-’-_"2 =0, (5.72)
9?2A B%A
(73 _8-;4)? - _3_53—2 = U, (573)
. 8D OFE
remainder: B t 5 = 0. (5.74)
From (5.72) and (5.73),
A(:L') =c + 2T, (5.75)
where ¢, and co are constants and therefore from (5.70) and (6.71),
B(t,z,u) = (c1 + ez)u? + D(t, ) , (5.76)
C(t, z,u) = cou+ E(t, ) . (5.77)
Equations (5.63) and (5.64) become
T = ¢y (u? +u) + co(zu? + zue) + D(t, 2) (5.78)
T? = c1(—ug) + ca(u — zug) + E(t,z) , (5.79)
where D(t,z) and E(t,«) satisfy (5.74). The conservation law
T' = D(t,z), T?*=E(z), (5.80)

s & trivial conservation law. Non-trivial conserved vectors of the form (5.30)
are therefore linear combinations of the two conserved vectors |

T = u? 4+ ug T? = —uy, (5.81)
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Partial differential equaﬁon Conserved vectors
Pt = y(pyi72 Pos T'=p, T?=(-p;)"/?
Upy = Uty T'=w?, T?=-u,
= T =2u?, T?=u—zu,
Yo — e = — T =u? +u;, T? = —u,
e ¢ T'=z(u?+uw), T?=u—zu,

Table 1: Conservation laws

T = 2(u? + uy) , T? = u — zuy . (5.82)

The conserved vector (5.81) is readily derived by writing (5.55) as

o 0
5t (U2 + u) + B (—ug) =0. (5.83)

It is the elementary conserved vector.

The derivation of the conserved vectors for a partial differential equation
does not depend on the boundary conditions. The derivation of a conserved
quantity from the conservation law does depend on the boundary conditions
through the component T2.

The conservation laws derived for the two nonlinear diffusion equations,
(4.1) and (4.4), and for the nonlinear wave equation, (5.55), are summarised
in Table 1

6 Compressive wave due to motion of plug into
tunnel

We now consider the turbulent compressible flow due to the plug moving
into the tunnel as a result of the air blast. This is modelled by Fanno flow
driven by a piston which was also considered by Ockendon et.al. [3]
Consider a piston moved impulsively with constant velocity ug such that
ug << ag where ag is the speed of sound in the gas at rest. The small
parameter in the flow is € = wug/ap. The same scalings as used for the
pressure wave are employed and 7 is defined by ¢t = e7. The equation of the
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piston in the (z,7) plane is z = &7 and the equation of the shock is again
given by (3.2). The boundary condition at the piston is

r=¢€T: u=1. (6.1)

Consider time T = O(e~2). For the region near the shock, z = 0(e7?)
and equations (3.5) to (3.7) again apply. But ug — 00 as I3 — O and
an inner region closer to the piston has to be introduced to satisfy the
boundary condition (6.1) at the piston. By cousidering how ug grows as
25 — 0, Ockendon et.al. [3] defined the inner variable £2 by

zo = e/ 2Ey . (6.2)

In this region x = O (6—3/ %) which is closer to the piston than x = 0(e2). In
equations (3.5) to (3.7) we make the transformation of independent variables
from (za,72) to (&2, 72) and dependent variables from: (uz, pa, p2) to {u,B, p)
where for this problem,

p=0(Y?), p= O(e™Y?), uw=0(1). (6.3)

Equations (3.5) to (3.7) become

0p ou
1/26p , 9%
€ o + 539 0, (6.4)
5%
12 9P _ _ 2
e o u”, (6.5)
op ou
1/2 _—p -— =
£ 32+6:’1‘:2 0. (6.6)

Since the boundary conditions on u are known we eliminate $ from (6.5)
and (6.6). This gives the nonlinear diffusion equation for u,

8%u du
5:?%1— 2u 8_7'2_ . (6.7)

The boundary conditions are

Bg=0: w=1, (6.8)
$9 — 00 : ’LLN3%. (6.9)
3

Using a similarity transformation Ockendon et.al. [3] reduced (6.7) to
an ordinary differential equation and performed a Lie plane analysis [5]. We
will investigate the conservation laws for (6.7).
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7 Conservation laws for compressive wave

In order to simplify notation we write (6.7) as

8%u ou

and the boundary conditions (6.8) and (6.9) as

z=0: u=1, (7.2)
T —00: urvg—;. (7.3)

The compressive piston problem, (7.1) to (7.3), differs form the problem of
small amplitude waves, (4.4) to (4.6), by the boundary conditions, (7.2) and
(4.5).

Conservation laws do not depend on boundary conditions. Two con-
served vectors for (7.1), given by (5.53) and (5.54), were derived in Section
5.2. The elementary conserved vector (5.54) lead to a conserved quantity for
small amplitude waves because of the boundary condition u.(t,0) = 0. Con-
sider the second conserved vector (5.54). The corresponding conservation
law can be written as

o
ot

and integrating with respect to z from z = 0 to z = oo we obtain

% (f:o :rfu,2(t, :r:)d:c) + [u - wum];o =0. (7.5)

Using the boundary conditions (7.2) and (7.3) and assuming that u.(t,0) is

. m t, $ dx 1 a i -6

The similarity solution for equation (7.1), given by (4.30), is independent
of the boundary conditions and contains a parameter . For small amplitude
waves we found using the conserved vector (5.53) that o = % For compres-
sive waves, o can be determined most easily from boundary condition (7.2).

Substituting (4.30) into (7.2) gives

(zu?) + g_ar: (v —zuz) =0 (7.4)

ti=22F0) =1 (7.7)
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and therefore o = 3. Thus from (4.30),
z
u(t,:z:) = F(§) §= t—lﬁ (78)

and substituting (7.8) into (7.6) we obtain conserved quantity
2
/; F(E)dE=1. (7.9)

Results of the form (7.9) may be useful when checking the accuracy of nu-

merical solutions.

8 Conclusions

The Fanno model is applicable if the flow is turbulent and the tunnel is long
enough for wall drag to be important. In a mining environment the diameter
of a tunnel may be 4 m and for an aspect ratio of 10~2 the tunnel network
would have to be about 4 km in length. This may be possible in mining
situations where there are interconnections by tunnels and shafts between
underground excavations.

We found conservation laws for the asymptotic reductions of the Fanno
model. We derived two linearly independent conservation laws for the non-
linear diffusion equation for the velocity and for the nonlinear wave equation.
In both cases one conservation law is the elementary conservation law which
is readily derived from the differential equation while the second conserva-
tion law is new and is not immediately obvious. For the nonlinear diffusion
equation for the pressure we found only one conservation law, the elemen-
tary conservation law, even although the form of the conserved vector at the
start of the analysis was the same as for the other two partial differential
equations. The conservation laws do not depend on the boundary condi-
tions. However, the conserved quantities derived from the conservation laws
depend critically on the boundary conditions.

The conservation laws and the conserved quantities derived from them
were useful when investigating the asymptotic reductions of the Fanno model.
A conserved quantity can be used to determine the unknown parameter in
a similarity solution. It may also be useful when checking the accuracy of a

numerical solution.
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